Hessenberg Decomposition of Matrix Fields and Bounded Operator Fields

نویسنده

  • BENOÎT JACOB
چکیده

Hessenberg decomposition is the basic tool used in computational linear algebra to approximate the eigenvalues of a matrix. In this article, we generalize Hessenberg decomposition to continuous matrix fields over topological spaces. This works in great generality: the space is only required to be normal and to have finite covering dimension. As applications, we derive some new structure results on self-adjoint matrix fields, we establish some eigenvalue separation results, and we generalize to all finite-dimensional normal spaces a classical result on trivial summands of vector bundles. Finally, we develop a variant of Hessenberg decomposition for fields of bounded operators on a separable, infinite-dimensional Hilbert space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Similarity of perturbations of Hessenberg matrices

To every infinite lower Hessenberg matrix D is associated a linear operator on l2. In this paper we prove the similarity of the operator D − ∆, where ∆ belongs to a certain class of compact operators, to the operator D−∆′, where ∆′ is of rank one. We first consider the case when ∆ is lower triangular and has finite rank; then we extend this to ∆ of infinite rank assuming that D is bounded. In S...

متن کامل

On Psi-conditional asymptotic stability of first order nonlinear matrix Lyapunov system

We provide necessary and sucient conditions for psi-conditional as-ymptotic stability of the solution of a linear matrix Lyapunov system and sucientconditions for psi -conditional asymptotic stability of the solution of a rst ordernon-linear matrix Lyapunov system X0 = A(t)X + XB(t) + F(t;X).

متن کامل

Hölder Regularity for Operator Scaling Stable Random Fields

Abstract. We investigate the sample paths regularity of operator scaling α-stable random fields. Such fields were introduced in [6] as anisotropic generalizations of self-similar fields and satisfy the scaling property {X(cx);x ∈ R} (fdd) = {cX(x);x ∈ R} where E is a d× d real matrix and H > 0. In the case of harmonizable operator scaling random fields, the sample paths are locally Hölderian an...

متن کامل

On the sum of Pell and Jacobsthal numbers by matrix method

In this paper‎, ‎we define two $n$-square upper Hessenberg matrices one of which corresponds to the adjacency matrix of a directed pseudo graph‎. ‎We investigate relations between permanents and determinants of these upper Hessenberg matrices‎, ‎and sum formulas of the well-known Pell and Jacobsthal sequences‎. ‎Finally‎, ‎we present two Maple 13 procedures in order to calculate permanents of t...

متن کامل

Determinants and permanents of Hessenberg matrices and generalized Lucas polynomials

In this paper, we give some determinantal and permanental representations of generalized Lucas polynomials, which are a general form of generalized bivariate Lucas p-polynomials, ordinary Lucas and Perrin sequences etc., by using various Hessenberg matrices. In addition, we show that determinant and permanent of these Hessenberg matrices can be obtained by using combinations. Then we show, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009